The inevitable advance of quantum computing means data security is one step closer to facing a threat more formidable than anything before.

The security concern is that quantum computers will be able to crack RSA public key cryptography, used to protect data in transit. That means security teams will have to pivot to new post-quantum cryptography solutions. A conservative estimate from a 2019 DigiCert report said teams will need to have protections from quantum computing breaches in place by 2022.

To be clear, quantum computing isn’t “quite there” just yet. And the Chinese or Russians aren’t closer to being able to decrypt RSA than Google or IBM, but it’s only a matter of time.

It therefore only makes sense, that as the US Government invests heavily in cyber security protocol, that they take into consideration the life span of any traditional cybersecurity solution.

The **BLAKFX Helix22 SDK** is already using many of the National Institute of Standards and Technology (NIST) proposed ciphers and based on the algorithms used, its design, the integrated dual post quantum perfect forward secrecy and a multi-layer, multi cipher with DNA cipher binding, it’s already **quantum immune for both data encryption AND for the key exchanges**.

This extremely powerful encryption SDK has been designed by the same team that created Wickr, Katim (National Security Secure phone), Cryptegrity platform and many others like secure clouds, secure VPN, secure email, etc. Some of these products are public, but some were designed for various government agencies and military.

**You can start your integration evaluation by looking at out public GIT published code for the Helix APIs, examples, documentation, etc** https://github.com/blakfx

Quantum computing is an enigma. On one hand it promises future information security, but it simultaneously threatens all information currently protected by 2048-bit RSA encryption.

**The Helix22 data security SDK is quantum immune**

Why is this? Put very simply, in our current model of computing, the power comes from parallel processing which can only be ascertained through linking separate processors. Parallel processing is external to the individual processor.

This thinking is reversed in quantum computing, which uses the quantum mechanics principle that a single object can be in multiple places at the same time. This multiplicity can be translated to variables which can in principle be different variables in a single algorithm that can be processed simultaneously. In other words, the parallel processing needed for current computer power is now moved inside a single processor. The computing power and time requirements are both exponentially affected.

The current security of RSA key encryption is based on the premise of creating an impossibly hard problem by factoring very large numbers. Although there are algorithms that can do so, the amount of computing power necessary is immense and easily increased – the effort to break the key grows nearly exponentially with the key size.

This concept that encryption will always remain ahead of the ability to build supercomputers with more and more separate cores operating in parallel and capable of decryption does not apply to quantum computers where the parallelism is effectively increased within the processor. **Powerful quantum computers will be able to defeat current RSA encryption relatively easily.** It has already been demonstrated that with quantum computers, factorization and discrete logarithms can be solved in polynomial time. A quantum computer can use its inbuilt parallelism to drastically reduce the time taken to crack the key. For example, adding a couple of more digits won’t help as RSA-3072 will be as easily defeated as a 2048 key.

In finding a suitable post-quantum encryption standard, it is useful to consider that the security of RSA encryption is based on two elements: the difficulty of the mathematical problem (factoring large numbers) that needs to be solved, and the assumed lack of any algorithm or method that can solve the problem with current classical computer technology. The quantum threat comes from the increase in computing power together with the existence of an algorithm that can harness that power to solve the problem: both parts are necessary.

This is what we have done at BLAKFX.

** In Math We Trust**

At BLAKFX, we design our products with a zealous eye on the future. Therefore, we utilize an over-riding principal we call “22nd Century Data Security” and build accordingly. The result is our Helix22 SDK which we can proudly boast is quantum computing immune. We know this as our cryptography is embedded with the data itself through our inventive and **patented process of DNA Binding ^{TM}**.

In our technology engineering, we use multiple symmetric ciphers, and we breakdown the files before encrypting them. Each fragment is encrypted differently and then are put together and encrypted with 3 more different ciphers. Though we are not at liberty to disclose our specific techniques, we utilize symmetric ciphers that are quantum resistant and one of them is quantum immune.

During the key exchange process we encrypt the encryption keys with 2 sets of asymmetric cipher keys with one of them being quantum immune and the other cipher is the strongest one today (before quantum).

Therefore, our encrypted files are never susceptible to a straight up brute force attack because of our algorithms and the way we use each of the ciphers. We don’t try to make the problem harder to solve, we created an impossible problem to piece together.

**BLAKFX is Based on Proven Business Success**

Our founders, Robert Statica PhD and Kara Coppa, also founded Wickr, which is used by the US military and has never been hacked since its inception in 2012. The Helix22 data security SDK is several generations enhanced since then. Dr. Statica also delivered the encryption for the world’s most secure phone, Katim.

** **

**Founder – Robert Statica PhD Founder – Kara Coppa Founder – Alex Maslov MS, MBA **

**Co-Founders of Wickr Katim ^{TM} Ultra Secure Smartphone**